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A Wireless World is A Better World

* Wireless communication is critical in shaping smart cities
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Wireless Traffic Data

 Data is naturally generated with
communications

« Many kinds of wireless traffic exist
« Downlink/uplink rate
 Number of connected users of a BS
» Throughput
« Packets of loT sensors
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Analysing Wireless Traffic is Important

* It contributes a lot for future

intelligent wireless networks ;o= = "= 2=,
* Improve network management | i ~ \ /y W Tl 0w

« Dynamic network congestion o Em——— EE—_—— ——

Time(s) Traffic pattern of switches

control TT—

* Reduce operating expenditure =l
« Accurate radio resource purchase ||;

« Enhance energy efficiency =

- Intelligent BS ON/OFF (==_§

g
=

d= L] = L
Congested = & é

- Switch 3 Cmgeﬁ‘et!- = Switch 3
Switch 4 0~4s e Swich 4 i

- Strengthen security @ [ = e o £

----- Wireless link with assigned channel
Low traffic load
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SDN-loT switch which may cause much congestion when traffic load, and can intelligently balance loads and avoid
patterns suddenly change in SDN-loT. congestion in SDN-loT.
o=  SDN-loT gateway

F. Tang, B. Mao, Z. M. Fadlullah and N. Kato, "On a Novel Deep-Learning-Based Intelligent Partially Overlapping Channel Assignment in SDN-loT," in IEEE Communications Magazine, vol. 56, no. 9, pp. 80-86, Sept. 2018.
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Two Kinds of Wireless Traffic

Traffic volume of a
region/BS generated by
subscribers

+

\ Y
Prediction (
Centralized Decentralized
algorithm algorithm
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Wireless Traffic Prediction

e Predict the traffic volume of
the next time slot based on

historical data

 Challenge: complex spatial
and temporal traffic dynamics s

* Right: city-wide traffic volume
visualization of Milano
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Centralized Wireless Traffic Prediction

« Spatial-Temporal Cross-domain Network (STCNet)

Spatial-Temporal Modeling

ConvLSTM > ConvLSTM
Cell Cell
v 7
ConvLSTM o ConvLSTM

Cell Cell

Cell ’ Cell

Meta Data Embedding L~

Cross Domain Data Modeling
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Decentralized Wireless Traffic Prediction

* Prediction based on federated learning

« BS clustering to capture spatial
correlation

* Quasi-global to reduce heterogeneity of
wireless traffic

« Dual-attention-based federated
optimization

> sael(w w4 oL, we)’

arg min LSTM 4.6976
v —1

- FedAvg 4.7988

FedAtt 4.7645

Our 3.9266
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Two Kinds of Wireless Traffic

Traffic volume of a
region/BS generated by
subscribers

+

N Y,
Prediction
Centralized Decentralized
algorithm algorithm
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Radio Frequency Fingerprint Identification

* RF Fingerprinting is a device authentication scheme that
identifies devices based on their hardware fingerprint.

<(( ))) _/ -
Device 1 é

Device 3 (G)

'. ooool

/ N //
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— Identify which

devices these
signals belong to
in high accuracy
using a function f
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Machine Learning for RF Fingerprinting

» State-of-the-art of ML-based RF fingerprinting

}

|
0* = arg min ﬁ(f(:v; 9), y) True labels of the corresponding
dataset, for example, 1, 2...

i

Loss function measuring the > The parameters of function f

goodness of our learning
function f, e.g., cross-entropy,
triplet loss J

Dataset stored in a

Target model/function, centralized server

e.g., CNN, MLP
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Challenges of Centralized RF Fingerprinting

 Centralized RFF is inappropriate when data privacy and
protection is a must; users are not incentivized to share data to
a centralized entity (server) since their data may contain private
information;

 Unrealistic to assume that a centralized dataset is always
updated with signal collections as new devices are continuously
entering the market;

* Prediction latency may high if multi-hops needed from the
device to the server.
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Solution: Decentralized RF Fingerprinting

 Push the learning and prediction from cloud (application server)
to the edge server

03/12/2024

Gateways

P —
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Backhaul

Network Server
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Application
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Designed Algorithm
A federated learning approach for RFFI

0* = arg min Zszl Li(f(rr;0), yr)

Local client /Divided into\ Edge server

two steps
Or < 0 — n(V f(0k; Br) + 21) 0 0—aX . Clgr)
r | ¢ |
Train with Iopal Qata, thus Introduced gradient i
no data-sharing is needed, compressor to reduce Accumulated
and privacy is preserved communication between local gradient at
Gradient randomization, client and edge server client k

thus security is guaranteed. )
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Conclusion

» We designed both centralized and decentralized algorithms for
wireless traffic prediction. Both spatial and temporal
dependencies are well modelled.

« We are working on FL-driven radio frequency fingerprint
identification for LoORaWAN network. The designed algorithm
keeps privacy of the data, guarantees security of the transferred
information, achieves communication efficiency.
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Thanks!

Questions?
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