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Abstract—Machine (deep) learning enabled accurate traffic
modeling and prediction is an indispensable part for future
big data-driven intelligent cellular networks, since it can help
autonomic network control and management as well as service
provisioning. Along this line, this paper proposes a novel deep
learning architecture, namely Spatial-Temporal Cross-domain
neural Network (STCNet), to effectively capture the complex
patterns hidden in cellular data. By adopting convolutional long
short-term memory network as its subcomponent, STCNet has a
strong ability in modeling spatial-temporal dependencies. Besides,
three kinds of cross-domain datasets are actively collected and
modeled by STCNet to capture the external factors that affect
traffic generation. As diversity and similarity coexist among
cellular traffic from different city functional zones, a clustering
algorithm is put forward to segment city areas into different
groups and consequently, a successive inter-cluster transfer
learning strategy is designed to enhance knowledge reuse. In
addition, the knowledge transferring among different kinds of
cellular traffic is also explored with the proposed STCNet model.
The effectiveness of STCNet is validated through real world
cellular traffic datasets using three kinds of evaluation metrics.
Experimental results demonstrate that STCNet outperforms the
state-of-the-art algorithms. In particular, the transfer learning
based on STCNet brings about 4%∼13% extra performance
improvements.

Index Terms—Cellular traffic prediction; big data; deep learn-
ing; intelligent traffic management

I. INTRODUCTION

As technological innovations gather pace, the smart phone
evolution in the past decade has accelerated data generation
and explosion, which has sped the era of big data [1]–
[4]. Among all the data sources, mobile traffic [5], [6] will
represent 20 percent of the total Internet traffic by 2021 and
particularly, data traffic produced by smartphones will surpass
86 percent of all the mobile data traffic as the emergence
of various mobile applications such as live streaming, virtual
reality and Internet of vehicles [7]. To meet the diverse re-
quirements of the mobile users, an emerging consensus on the
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adoption of machine (deep) learning and artificial intelligence
(AI) [8]–[10] to the fifth-generation mobile networks (5G)
and beyond has been intensively investigated [11]–[14]. In
particular, the International Telecommunication Union (ITU)
has recently launched a new focus group to assist AI and
machine learning in contributing to the efficiency of the
emerging 5G systems. The introduction of AI will enable
wireless networks to self-optimize, improve efficiency, and
deliver optimal user experiences, and consequently, lead to
more stable network connections for individual users and for
businesses [15].

On the way to AI-enhanced fully automated network man-
agement, one of the essential problems lies in the accurate
traffic prediction [11] because many tasks in wireless com-
munications require real-time or non-real time traffic analysis
and prediction capabilities. For instance, the efficiency of
demand-aware resource allocation is largely benefited from the
accurate prediction of future wireless traffic [16]. Besides, the
functional base station (BS) sleeping mechanism also relies
heavily on the knowledge of the predicted traffic of specific
BSs or areas to achieve the purposes of green communications
and ultimate user requirements [17]. However, it is a very chal-
lenging task to simultaneously predict cellular traffic network-
widely due to the following reasons. Firstly, mobile users
have various needs at different time in different places and
this makes the traffic hard to predict. Secondly, user mobility
introduces spatial dependencies into cellular traffic among
geographically distributed cells [18]. Finally, cellular traffic
is influenced by many external factors such as the number
of BSs. These factors further complicate the spatiotemporal
dependencies among cellular traffic of different BSs.

Researchers in recent years have made great efforts to
solve the above mentioned challenges. Inherently, cellular
traffic prediction can be treated as a time series forecasting
problem. According to the solving methods, existing works
can be roughly divided into two categories, i.e., statistical-
based methods and machine learning-based methods. For the
first category, the cellular traffic is modeled and predicted
based on statistics or probabilistic distribution, including α-
stable distribution [19], AutoRegressive Integrated Moving
Average (ARIMA) [20]–[22], covariance function [23] and
entropy theory [24]. These works have made a comprehensive
exploration and characterization on the patterns and character-
istics of cellular traffic. It has been demonstrated that the traffic
is temporally self-similar and spatially inhomogeneous but
also correlated to each other. In prediction, the spatial and/or
temporal dependencies are modeled to improve performance.
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Generally, most of these methods are linear statistical methods.
However, it becomes increasingly clear that linear models are
not adapted to many real applications [25]. Though several
nonlinear models were proposed such as generalized autore-
gressive conditional heteroskedasticity, the analytical study of
nonlinear forecasting method is still in its infancy compared
to linear models.

For the second category, with the accumulation of massive
cellular traffic data and the advances in machine learning
and AI techniques [26]–[29], data-driven machine learning-
based traffic prediction methods have established themselves
as strong competitors to classical statistical models and ob-
tained tremendous attentions in wireless communication do-
main [30]–[33]. In the beginning, several shallow learning
methods such as linear regression [34] and support vector
regression (SVR) [35], are utilized for traffic prediction. With
the fast development and widespread penetration of deep
learning [10], how to make an accurate traffic prediction for
cellular networks by leveraging the powerful deep learning
techniques has become a hot topic. The authors of [30]
proposed a deep learning-based prediction method in which
the temporal dependence is captured by the low-pass com-
ponent of discrete wavelet transform. To further capture the
spatial dependence of wireless traffic among geographically
distributed cell towers, [31] designed a hybrid deep learning
model for spatiotemporal prediction, in which the spatial
dependence is modeled by autoencoders and the temporal de-
pendence is captured by Long Short-Term Memory networks
(LSTM). Instead of using all neighboring traffic information,
the most correlated neighbors that have the highest correlation
coefficients with the target BS are selected to provide the
spatio-temporal information [36]. In order to simultaneously
capture the spatial and temporal dependencies of traffic and
predict the traffic in citywide scale, the convolutional neural
networks (CNN) are leveraged in [32] and [33]. Specifically,
the authors in [32] proposed a novel framework by fusing
different kinds of temporal dependencies, i.e., closeness and
period, using a parametric-matrix-based fusion strategy, then
densely connected CNN [37] is introduced to learn spatial
dependence and enhance feature propagation. While in [33],
the authors proposed a multi-step prediction framework based
on convolutional LSTM (ConvLSTM), which has the ability
of modeling temporal and long-distance spatial dependencies.

All the above works mainly focus on the cellular traffic
dataset itself, and various external factors such as BSs in-
formation and POIs distribution, are hardly ever considered.
However, it is well understood that these influential factors
are directly correlated to the generation of cellular traffic [5],
[6]. Besides, current works on network-wide traffic prediction
failed to capture the pattern diversity of different city func-
tional zones and the traffic similarity of various services.

Motivated by the aforementioned problems, this work fo-
cuses itself on deep learning-based accurate traffic prediction
in cellular networks under the scenario of cross-domain big
data. In order to make a full characterization on external
factors that influence cellular traffic volume, three kinds of
cross-domain datasets, i.e., BSs information, POIs distribution
and social activity level, are actively collected in this paper.

The correlations between these datasets and different kinds
of cellular traffic are investigated and analyzed in detail to
facilitate cellular traffic prediction. The citywide cellular traffic
data are then clustered into several groups to model pattern
diversity of different functional zones. After the clustering op-
eration, a novel traffic prediction framework, namely, Spatial-
Temporal Cross-domain neural Network (STCNet), is designed
and a successive inter-cluster transfer learning strategy is
put forward to enhance prediction performance. To further
exploit the similarities of different kinds of cellular traffic,
the model-based transfer learning is also explored in this
work. Specifically, the main contributions of this paper can
be summarized as follows.
• Three kinds of cross-domain datasets are actively col-

lected and their correlations with different types of cel-
lular traffic are investigated in detail. Although it is
a preliminary analysis on these datasets, it is of great
importance in designing prediction model.

• A novel deep learning based traffic prediction architecture
is proposed and it can effectively fuse the cross-domain
datasets into a unified representation. The spatial, tem-
poral and various external factors that influence traffic
generation can be well captured by ConvLSTM and
CNN. The dense connectivity pattern is introduced in the
feature learning process and it can enhance the feature
propagation and reuse for traffic prediction.

• To capture the pattern diversity and similarity of cellular
traffic of different city functional zones, a clustering
algorithm is put forward to segment city areas into
different clusters. Then, a successive inter-cluster transfer
learning strategy is proposed to capture the regional
differences and similarities from spatial and temporal
domain, respectively.

• The model-based deep transfer learning is also explored
to fully utilize the spatiotemporal similarities of different
kinds of cellular traffic, thus further improve prediction
performance.

Our findings show that the cross-domain datasets have a
high correlation with the cellular traffic and the introduction
of these datasets greatly benefits the prediction performance.
To demonstrate the superiority of the proposed deep learning-
based traffic prediction architecture, it is validated on three
kinds of real world cellular traffic datasets. The experimental
results show that the proposed prediction architecture outper-
forms baseline methods greatly and the model-based transfer
learning can indeed improve prediction performance.

The rest of this paper is organized as follows. Section II
gives a detailed description of the cellular traffic dataset and a
preliminary analysis associated with the main observations on
the dataset. Then Section III introduces the overall prediction
framework based on deep learning including spatiotemporal
and external factors modeling of cellular traffic. The detailed
experiment setup and results analysis are shown in Section IV.
Finally Section V concludes the work.

II. DATASET DESCRIPTION AND PRELIMINARY ANALYSIS

In this section, detailed cellular traffic dataset considered in
this work is introduced. The traffic dynamics along with the
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(a) Temporal dynamics of cellular traffic.
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(b) Autocorrelation analysis. (c) Spatial distribution of cellular traffic.
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(d) Spatial correlation analysis.

Fig. 1: The spatial and temporal dynamics of cellular traffic.

spatiotemporal dependencies are displayed from spatial and
temporal domain, respectively. In addition, the cross-domain
datasets that model the external factors to cellular traffic are
described and their correlations with different kinds of cellular
traffic are also represented.

A. Big Traffic Data from Cellular Networks

The cellular traffic dataset analyzed in this paper comes
from a large telephony services provider in Europe, Telecom
Italia, as part of the “Big Data Challenge” [38]. The dataset
is collected from 11/01/2013 to 01/01/2014 with a temporal
interval of 10 minutes over the whole city of Milan (62 days,
300 million records, about 19 GB). The area of Milan is
divided into a grid overlay of H × W (100 × 100) squares
and the size of each square is about 235× 235 meters and we
refer to it as a cell1. In each cell, three kinds of cellular traffic
are recorded by the service provider, that is, short message
service (SMS), call service and Internet service. For a specific
service type s ∈ {SMS,Call, Internet}, the city wide cellular
traffic can be denoted as a sptaiotemporal sequence of data
points Ds = {Ds,t|t = 1, 2, · · · , T}, where T is the total
number of time intervals. Ds,t is the traffic matrix at the t-th
time interval in a geographical area represented as H × W
cells and it can be written as

Ds,t =


d
(1,1)
s,t d

(1,2)
s,t · · · d

(1,W )
s,t

d
(2,1)
s,t d

(2,2)
s,t · · · d

(2,W )
s,t

...
...

. . .
...

d
(H,1)
s,t d

(H,2)
s,t · · · d

(H,W )
s,t

 , (1)

where d
(h,w)
s,t measures the cellular traffic volume in a cell

with coordinates (h,w) and the sequence can be regarded
as a tensor Ds ∈ RT×H×W . Note that the next preliminary
analysis from spatial and temporal domain is suitable to any
kinds of cellular traffic. Thus, for ease of readability, the
notation of service type is omitted in the following, that is,
Ds,t = Dt and d

(h,w)
s,t = dh,wt , unless otherwise specified.

After carefully exploring the cellular traffic dataset, the spatial
and temporal dynamics and the corresponding correlation
analysis are demonstrated in Fig.1.

1This is actually the best coverage approximation of a cellular tower from
publicly available dataset in such a large scale and fine granularity.

Fig.1a shows the temporal dynamics of different kinds of
cellular traffic in different cells. The x-axis denotes the time
interval index (in hour scale) and y-axis the number of events
of a specific cellular traffic. The upper sub-figure shows the
SMS traffic dynamics, the middle one is the CALL and the
bottom one shows the Internet. It can be clearly seen from
Fig.1a that: 1) The cellular traffic, no matter which type they
belong to, show strong daily patterns in all the three different
cells; 2) The daily patterns of different cellular traffic are not
the same. For example, the Internet service has shorter peak
traffic hours compared with SMS service and Call service;
3) For a specific service, the traffic patterns of different cells
have considerable differences. Taking the cell Navigli as an
example, there is a significant delay in the arriving of the
peak traffic hours compared with the other two cells. Fig.1b
displays the autocorrelation of SMS in a specific cell2. The
autocorrelation coefficient [32] at cell (h,w) is computed as
follows:

rk =

∑T−k
t=1 (d

(h,w)
t − d̄(h,w))(d

(h,w)
t+k − d̄(h,w))∑T

t=1(d
(h,w)
t − d̄(h,w))2

, 0 6 k 6 T,

(2)
where d̄(h,w) represents the mean value of the cell over time
domain. As depicted in Fig.1b, the cellular traffic exhibits
non-zero autocorrelations in time domain and this indicates
the future traffic volume can be predicted through historical
observations.

Fig.1c shows the spatial distribution of SMS traffic at
a specific time interval. We can see from this figure that
the traffic are distributed unevenly among the whole city.
Accordingly, Fig.1d shows the spatial correlation in terms of
Pearson correlation coefficient ρ, which is a widely adopted
metric for measuring spatial correlations [31], [32] and its
definition is expressed as

ρ =
cov(d(h,w), d(h

′,w′))

σd(h,w)σd(h′,w′)
, (3)

where cov(·) denotes the covariance operator and σ is the
standard deviation. It can be clearly told that the spatial
correlation indeed exists among different cells. The degree of
spatial correlation depends, to a certain extent, not only on

2The other traffic of different cells show similar results and we only take
SMS traffic for demonstration purpose and omit the other autocorrelation
results.
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Fig. 2: Heatmap of cross-domain datasets along with the city
topology and cell division of Milan.

the distance between any two cells. For example, though cell
(3, 5) and cell (5, 5) are with the same distance to the target
cell (4, 4), their correlation values, which are 0.62 and 0.92,
respectively, are not the same.

B. Cross-Domain Datasets Description

The cellular traffic volume is influenced not only by the
spatiotemporal factors, but also by other external factors such
as the number of BSs and POIs of a cell. For example,
the number of BSs of a cell decides how much traffic load
can be carried. When the traffic load reaches its peak, the
observed traffic volume is fixed no matter how many extra
users enter this cell. In order to achieve accurate cellular traffic
prediction, multiple influencing factors must be considered
based on cross-domain datasets, since different datasets can
characterize the cellular traffic from different perspectives.
Intuitively, the number of BSs and POIs as well as social
activities of a cell can directly reflect user’s requesting ability
for telecommunication services, therefore three kinds of cross-
domain datasets are considered in this work3, i.e., the BSs
information, the POIs distribution and the social activity level.

The dataset about BSs information is obtained from Open-
CellID [39], which is an open-source project collecting data
about mobile cells all over the world. This dataset contains
many types of information about the BS such as the location
(longitude and latitude), the mobile country code and the
estimated coverage range of each BS. With the geolocation
information of each cell, we can map the location of each
BS to the cell which the BS is located in after simple

3The cellular traffic may also influenced by other factors, but they are not
considered in this work due to the availability of datasets.

Fig. 3: Correlation analysis between different kinds of cellular
traffic and external datasets.

preprocessing. Then the number of BSs of each cell d(h,w)
BS

can be calculated. This BSs information is denoted as

DBS =


d
(1,1)
BS d

(1,2)
BS · · · d

(1,W )
BS

d
(2,1)
BS d

(2,2)
BS · · · d

(2,W )
BS

...
...

. . .
...

d
(H,1)
BS d

(H,2)
BS · · · d

(H,W )
BS

 . (4)

For the POIs distribution information, which can be crawled
using Google Places API [40]. Specifically, 13 kinds of POIs
are collected including subway station, store, restaurant, etc.
The detailed description on each category is displayed in
Table.I. The number of each category is added together to
form the final representation. The matrix generated through
POI dataset is expressed as

DPOI =


d
(1,1)
POI d

(1,2)
POI · · · d

(1,W )
POI

d
(2,1)
POI d

(2,2)
POI · · · d

(2,W )
POI

...
...

. . .
...

d
(H,1)
POI d

(H,2)
POI · · · d

(H,W )
POI

 . (5)

The social activities of a cell reflect the overall user demand
degree for network services. The dataset on social activity level
is obtained through Dandelion API [41]. The obtained data
contains the information a user generated when using twitter,
such as the location and keywords. After preprocessing, the
social activity level can be obtained and we denote this matrix
as

DSocial =


d
(1,1)
Social d

(1,2)
Social · · · d

(1,W )
Social

d
(2,1)
Social d

(2,2)
Social · · · d

(2,W )
Social

...
...

. . .
...

d
(H,1)
Social d

(H,2)
Social · · · d

(H,W )
Social

 , (6)

where d(h,w)
social represents the number of social activities of cell

(h,w).
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TABLE I: Detailed statistics of the datasets.

Dataset Type # of records

Cellular traffic SMS / Call / Internet ≈ 300 million

POI

Subway station 104658
Store 19748

Church 512
Cafe 995
Park 765

Library 188
Bank 882
Bar 3192

Parking 392
Restaurant 4666

School 1284
Lodging 2922
Hospital 1585

BSs GSM / CDMA / LTE 69909

Social activity Twitter 269290

The complexity of obtaining the above three kinds of cross-
domain datasets is relatively low as there exists standard
APIs for these data. These datasets are treated as static in
our work, this is because they will not frequently change
over a period of time. So once obtained, these datasets can
be used in model training. The heatmaps generated by the
above three kinds of cross-domain datasets along with the city
topology and cell partition of Milan are displayed in Fig.2,
which contains 5 layers. From the bottom layer to the top
one, these 5 layers are city topology of Milan, illustration
of different cells, BSs distribution, social activity level and
POIs distribution. It can be seen from this figure and Fig.1c
that the cross-domain datasets have similar spatial distribution
compared with cellular traffic of different services. The city
center has more facilities than rural areas, thus more traffic is
generated in these places.

To further quantify the spatial correlations between cross-
domain datasets and cellular traffic, the Pearson correlation
coefficients are calculated and shown in Fig.3. From this
figure, several important observations can be concluded in the
following. 1) The spatial correlations, which can be calculated
using equation (3), among three kinds of cellular traffic are the
highest. This indicates that different kinds of cellular traffic
have a certain similarity, thus the pattern knowledge learned
from one type of traffic data can be transferred to another type
of traffic data. 2) The BSs distribution is most correlated to
cellular traffic compared with the other datasets. This shows
that the number of BSs in a cell indeed influences the traffic
generation thus it can be used as features to facilitate traffic
prediction. 3) In terms of POI categories, social gathering
places like cafe, bar and restaurant have high correlation
coefficients with cellular traffic. This indicates that the number
of POIs of a cell can influence the number of users, thus
further influence the traffic volume. 4) The social activity level,
along with the other kinds of POIs have a less correlation with
cellular traffic, but the values are also non-zeros.

Based on analysis of the above spatial correlations, it can be
concluded that the cross-domain datasets considered, i.e., BSs
information, POIs distribution and social activity level, have
high correlation coefficients with different kinds of cellular

traffic. They should be considered in the design of cellular
traffic prediction model.
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Fig. 4: STCNet framework.

III. CELLULAR TRAFFIC PREDICTION FRAMEWORK:
STCNET

In this section, the proposed deep learning prediction archi-
tecture, STCNet, is introduced and the diagram is displayed in
Fig.4. Specifically, a comprehensive description on the main
body of STCNet is given first. To segment city areas into
different functional zones, the clustering algorithm is designed.
Then, a successive inter-cluster transfer learning strategy is
put forward to enhance knowledge reuse and prediction per-
formance.

A. Prediction Model

There are three inputs for the proposed STCNet. As shown in
Fig.4, the first input (Dt−1, · · · ,Dt−p, p ∈ N ) is a sequence
of data traffic matrix before the target time interval. The second
input (m) refers to the metadata of datetime corresponding to
the time interval, such as day of week and hour of day. The
third input represents the cross-domain datasets including BSs
information (DBS), POIs distribution (DPOI) and social activity
(DSocial). To handle these three different inputs according to
their data format and characteristics, three kinds of neural
networks are designed as follows.

1) Spatiotemporal modeling: The first input can be seen
as a video-like data which has p frames4 and each frame is
a one-channel image. It is well know that CNN has strong
abilities to model spatial dependence as it can effectively fuse
local area information and automatically extract features for
specific tasks. But time sequence information is not precisely
captured by CNN. While LSTM networks can well model the
sequences information of cellular traffic. Thus by combining
CNN and LSTM, a two-layer ConvLSTM network is designed
to simultaneously model the spatial-temporal dependencies
and the sequence information, as shown in Fig.4.

Each unit in the ConvLSTM layer has one memory cell
C to accumulate state information. This memory cell can
be accessed and modified through three self-parameterized
controlling “gates”, i.e., input gate ig , forget gate fg and

4A frame denotes a traffic snapshot at one time interval.
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output gate og . Specifically, whenever a new input comes to the
ConvLSTM unit, the information it carries can be stored to C if
the input gate ig is activated. Similarly, the past cell status can
also be forgotten in this process if the forget gate fg is on. The
final hidden state H is controlled by the output gate og , which
decides whether the cell output C should be propagated to the
final state or not. We specify the key operations of ConvLSTM
unit on the frame Dt−n in below, where n ∈ {1, 2, · · · , p}.
σ(·) denotes the activation function, ∗ denotes the convolution
operation and � is the Hadamard product:

iτg = σ(Wdi ∗Dτ + Whi ∗ Hτ−1 + Wci � Cτ−1 + bi),

fτg = σ(Wdf ∗Dτ + Whf ∗ Hτ−1 + Wcf � Cτ−1 + bf ),

Cτ = fτg � Cτ−1 + iτg � tanh(Wdc ∗Dτ + Whc ∗ Hτ−1 + bc),

oτg = σ(Wdo ∗Dτ + Who ∗ Hτ−1 + Wco � Cτ + bo),

Hτ = oτg � tanh(Cτ ).
(7)

In the above equation, W(·) and b(·) are the weights and
biases to be learned, respectively. Besides, tanh(·) refers to
the hyperbolic tangent function which acts as nonlinear trans-
formation of input. Note that the iτg , fτg , oτg , Cτ and Hτ in the
ConvLSTM unit are all three-dimensional tensors. The output
of ConvLSTM network is denoted as Ost ∈ RF×H×W , where
F is the number of feature maps.

2) Meta-data embedding: As the date and time information
of the cellular traffic is recorded when mobile users asking
for services, we extract the meta data and treat them as
features. For example, if the datetime of t-th time interval
is 13:00:00 11/19/2014, then four kinds of meta data are
extracted, i.e., Day of Week (Tuesday), Hour of Day (13),
is Weekday (Yes), is Weekend (No), and form a feature vector
m. This feature vector is fed into a two-layer neural network,
in which the dimensionality of m is increased from 4 to
F ×H×W . The mathematical expression of ometa is denoted
as

ometa = σ(w2
metaσ(w1

metam + b1meta) + b2meta), (8)

where wl
meta and blmeta are learnable parameters at l-th layer,

l ∈ {1, 2}. Then after a reshape operation, the output of this
component, Ometa, can be obtained.

Ometa = Reshape(ometa), (9)

where ometa ∈ RFHW×1 and Ometa ∈ RF×H×W .
3) Cross-domain data modeling: To model external influ-

encing factors of traffic generation and learn feature repre-
sentations contained in the cross-domain datasets, a two-layer
CNN architecture is designed. In this architecture, the datasets
DBS, DPOI and DSocial are processed into a tensor Dcross
through concatenation operation. After performing nonlinear
transformation on Dcross, the initial feature representations of
cross-domain datasets Ocross can be obtained and written as

Ocross = f(Wcross ∗Dcross), (10)

Dcross = DBS ⊕DPOI ⊕DSocial, (11)

where ⊕ is the concatenation operation and similarly, Wcross
is the weights that will be learned through optimization.
f(·) represents a composite function that implements the

Batch Normalization (BN)5, rectified linear units (ReLU) and
convolution operation (Conv) sequentially.

4) Feature learning with dense convolutional network: The
three outputs are fused together by the concatenation operation
which can be expressed as

O = Ost ⊕Ometa ⊕Ocross, (12)

where O refers to the overall representation of the initial
feature map and is also the input to the dense convolutional
network. Note that the addition operation is not recommended
in this process since it mixes different kinds of information to-
gether and does not benefit the effective feature learning. This
component consists of L layers and each layer implements
a composite function fl(·), which is the same as the one in
cross-domain data modeling, that is, fl(·) = f(·) except that
l indexes the layer.

In order to fully capture the spatial-temporal dependencies
and many other external influencing factors that affect cellular
traffic volume, the dense connectivity pattern is designed in
this component. This kind of connectivity denotes that there
exist direct connections from any layer to all subsequent layers
and the resulting layout of this component is illustrated in
Fig.4. Consequently, the l-th layer receives the feature maps
of all preceding layers, O0,O1, · · · ,Ol−1, as input:

Ol = fl(O0 ⊕ · · · ⊕Ol−1), (13)

where O0 = O. The output at the last layer of this component
can be expressed as OL ∈ RH×W . After an activation
operation, the final prediction is obtained.

Ŷ = σ(OL). (14)

Thus the objective function of STCNet is to minimize the
Frobenius norm of error matrix between prediction and ground
truth over all cells. It can be expressed as

L(θ) = arg min
θ
‖Ŷ −Y‖F , (15)

where θ refers to the parameters of STCNet and can be easily
trained through optimization techniques.

B. Successive inter-cluster transfer learning

The pattern of cellular traffic for different areas of cellu-
lar networks is very complex since diversity and similarity
coexist. These coupled influence factors will lead to serious
performance degradation of prediction methods, if they are not
properly captured and modeled. Hence, aiming to capture the
pattern diversity and similarity of different areas in generating
cellular traffic, a clustering algorithm and a transfer learning
strategy are proposed in this work, as shown in Fig.5a.

For the clustering algorithm, by incorporating cellular traffic
dataset Ds and cross-domain datasets DBS, DPOI and DSocial,
the overall feature representation D is first formed. Then a

5BN is used to accelerate deep neural network training by reducing internal
covariate shift. Training a deep network model is complicated by the fact that
the distribution of each layers inputs changes during training, as the parameters
of the previous layers change. This slows down the training by requiring lower
learning rates and careful parameter initialization, and makes it hard to train
models with saturating nonlinearities
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Fig. 5: Transfer learning strategy for traffic prediction.

graph can be obtained, in which vertices are the cells and
edges denote the adjacency information of different cells, that
is, if two cells are horizontally or vertically adjacent, then
they form an edge in the graph. Based on the descriptions of
vertices and edges, the corresponding adjacency matrix A can
be calculated whose weights are the gradients of D. Next, the
Laplacian matrix can be constructed as

L = P−1/2AP−1/2, (16)

where P is a diagonal matrix whose (i, i)-element is the sum
of A’s i-th row. After that, the k largest eigenvectors of L,
x1,x2, · · · ,xk, can be achieved and form the matrix X =
[x1x2 · · ·xk] ∈ Rn×k by stacking the eigenvectors in columns.
Note that the rows of X should be renormalized to have unit
length. The rows of X can be treated as features of cells, then
we perform K-Means algorithm on X and thus k clusters are
found. Finally, the cluster label of each cell is obtained.

On the basis of clustering results, an inter-cluster transfer
learning strategy is designed to learn the pattern similarity
of different areas. This kind of similarity indicates that the
traffic pattern knowledge learned from one cluster could be
transferred to other clusters. Transfer learning can make the
prediction model avoid learning from scratch thus accelerate
the optimization process. As shown in Fig.5a, the strategy is
described as follows: the dataset of the first cluster is trained
through STCNet and the parameters can be learned. Then
these learned parameters are treated as prior knowledge of
the second cluster (parameters’ initialization) and continually
trained using the dataset of the second cluster. This operation is
repeated on all the clusters and we can get all the models. The
obtained models can well capture both the pattern diversity and
similarity of different areas, since the operation of successive
transferring of knowledge.

C. Transfer learning among different kinds of cellular traffic

From the preliminary data analysis in section II-B, it can
be told that there exist high similarities among datasets of
SMS, Call, and Internet, which indicate the possibility of
knowledge transferring. Thus, similar to the successive inter-
cluster knowledge reuse, we further propose a model-based
transfer learning strategy to fully exploit the similarities among
cellular traffic. The workflow of this strategy is illustrated
in Fig.5b. Specifically, a model MS can be obtained after
training STCNet using data from the source domain S. Then
MS can be transferred to the target domain T by means
of parameter initialization. The parameters of STCNet are
continually trained using data from target domain and the
model MT can be learned. Finally the prediction is carried
out on the test data of the target domain and the results can
be obtained.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, extensive experiments are conducted to
demonstrate the effectiveness of STCNet for cellular traffic
prediction. The experimental settings and key parameters
are given first. Then the performance metrics and baseline
methods which we compared with are described in detail.
Next we give the overall prediction performance of STCNet
and baseline methods on various kinds of cellular traffic and
particularly, give the predictions and ground truth comparisons
for two randomly selected cells in the city. The transfer
learning results on different kinds of cellular traffic are also
given.

A. Data preprocessing and experiment settings

As traffic values of some cells at certain time intervals are
missing due to data storage error or not properly transmitted.
So data completion needs to be done before proceeding to
the next stage of cellular traffic prediction. We use a standard
way [42] to fill missing values of cell (h,w), that is, these
values are represented by the mean traffic volume values of
its surrounding cells. The operation is expressed as

d
(h,w)
t =

∑
i∈[−1,1]

∑
j∈[−1,1]

d
(h+i,w+j)
t

8
. (17)

The granularity of the original cellular traffic is 10-minute and
we first group it into hour scale due to the following reasons:
1) Most of the cells have traffic volume of zero in 10 minutes,
thus the data are very sparse and not conducive to traffic
prediction. 2) Resource planning, such as cell zooming, in 10-
minute level is a very challenging task for network operators
and may result in unstable networks or excessive overhead.
Then the traffic volume is scaled into range of [0, 1] using Min-
Max normalization to accelerate the training process. When
the prediction is finished and the evaluation is performed, the
value is rescaled back to its normal scale. Data from the first
seven weeks are utilized to construct training dataset, and
consequently, data from the last week are used to construct
test dataset, on which the performance of various prediction
algorithms will be tested. Both training and test datasets are
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Fig. 6: Comparisons of prediction performance on three different kinds of cellular traffic in terms of various evaluation metrics.

constructed using sliding window method with window size
p = 3.

The STCNet is optimized using a stochastic gradient-based
optimization technique, Adam [43] which is widely used in
current deep learning domain. Besides, the model is trained
for 500 epochs with batch size 32. An adaptive learning rate
α is adopted in this work, whose initial value is set to be
0.01 and will be divided by 10 and 100 at 50% and 75% of
the total number of training epochs accordingly6. The initial
convolution layers have 16 filters (F = 16) with kernel
size (3 × 3) and ReLU activation function except for the
last layer, which has 1 filter with kernel size (1 × 1) and
sigmoid activation function. The values of these parameters are
determined based on experiment requirements and other values
can also be chosen, but the optimization of these parameters
are not focused in this work.

B. Evaluation metrics and baseline methods

Three metrics are adopted in this work for the sake of a
comprehensive evaluation of different prediction algorithms.

The first one is Root Mean Square Error (RMSE). This
is a frequently used measure of difference between values
predicted by a model and the values of ground truth.

RMSE =

√∑T
t=1

∑H
h=1

∑W
w=1(d̂

(h,w)
t − d(h,w)

t )2

T ×H ×W
(18)

The second one is Mean Absolute Error (MAE). MAE mea-
sures the average of the absolute differences between predic-

6It should be noted that the choices of batch size and learning rate have
indeed great influence on the prediction performance and we follow the
choices of previous work in deep learning domain. The strategies that finding
the best values of these hyper-parameters are beyond the scope of this work.

tion and ground truth where all individual differences have
equal weight.

MAE =

∑T
t=1

∑H
h=1

∑W
w=1 |d̂

(h,w)
t − d(h,w)

t )|
T ×H ×W

(19)

The last metric is R-squared (R2), which represents the
proportion of the variance in the dependent variable that is
predictable from the independent variable(s).

R2 = 1−
∑T
t=1

∑H
h=1

∑W
w=1(d̂

(h,w)
t − d(h,w)

t )2∑T
t=1

∑H
h=1

∑W
w=1(d̄(h,w) − d(h,w)

t )2
(20)

For RMSE and MAE, the smaller the value, the better the
performance. On the contrary, for R2 metric, a larger value
implies a better fitting to the data, thus, a better performance.

In order to show the superiority of our proposed cellular
traffic prediction model, the performance of STCNet is com-
pared with several classical baseline methods that are widely
used in time series prediction. The reference approaches
including Linear Regression (LR) [34], Support Vector Regres-
sion (SVR) [35], LSTM networks [36] and Spatial-Temporal
Densely Connected CNN (DenseNet) [32]. The LR and SVR
are representatives of shallow machine learning methods and
they have a wide range of applications in various fields.
Different from LR and SVM, LSTM and DenseNet are two
deep learning-based prediction methods that achieve the state-
of-the-art in cellular traffic prediction.

C. Prediction performance on different kinds of traffic

The results of evaluation metrics on three different kinds of
cellular traffic are plotted in Fig.6. Among all the sub-figures,
Fig.6(a)-(c) represent the results on SMS dataset in terms of
RMSE, MAE and R2, respectively. Accordingly, Fig.6(d)-(f)
are the results on the Call dataset and Fig.6(g)-(i) the results
on the Internet dataset.
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Fig. 7: Prediction results of the first cell (50, 60), Milan’s Duomo.

As can be clearly seen from Fig.6, our proposed STCNet
achieves the best prediction results in terms of RMSE, MAE
and R2 score on all the three kinds of cellular traffic. The
reasons behind the success of our model can be attributed
into threefold. First, the spatial and temporal dependencies are
simultaneously captured by the STCNet, particularly by the
ConvLSTM component. Second, the cross-domain datasets,
such as BSs information and POIs distribution, put a spatial
constraint on the cellular traffic generation. They can be used
as features to enhance traffic prediction. Third, the traffic
pattern diversity and similarity of different areas are fully
exploited through our successive inter-cluster transfer learning
strategy. Compared with prediction methods with similar net-
work architecture but using different inputs, ST-Net and STM-
Net7, STCNet presents the best overall results, which validates
the benefits of including meta data and cross-domain datasets.
As cellular traffic dynamics are highly nonlinear from both

TABLE II: The impacts of each kind of cross-domain datasets
on the prediction performance.

Dataset Type RMSE MAE R2

SMS

No cross-domain 57.7105 32.6001 0.8284
+ Social 55.5904 27.3112 0.8501
+ BSs 54.5176 28.7362 0.8576
+ POIs 52.8764 28.1744 0.8596

Call

No cross-domain 40.1073 17.7448 0.8962
+ Social 37.0430 17.9974 0.9094
+ BSs 33.8271 17.6993 0.9252
+ POIs 33.3415 15.8556 0.9226

Internet

No cross-domain 172.7059 94.1415 0.9488
+ Social 166.1807 91.8873 0.9504
+ BSs 167.7501 93.8525 0.9501
+ POIs 164.3131 90.9473 0.9529

7Specifically, ST-Net takes only cellular traffic as its input, while STM-Net
has two inputs, i.e., cellular traffic and meta-data feature.

temporal and spatial dimensions, this makes the prediction of
future traffic volume a very challenging task and beyond the
ability of linear models. Thus the LR method performs the
worst among all the methods. The SVR method, which is a
nonlinear model, can deal with the nonlinearities of cellular
traffic, thus obtains better results than LR method. For the
prediction method based on LSTM network, the performance
is not as good as STCNet since only temporal dependence is
considered and the spatial dependence of cellular traffic from
different cells is ignored. Both the spatial and temporal depen-
dencies are captured by the DenseNet-based method, hence it
improves prediction performance greatly but still inferior to
our proposed STCNet model. This is because the sequence
information of traffic frames is not modeled. In addition,
DenseNet prediction method relies only on the cellular traffic
itself and the various external factors that influencing traffic
generation are not considered.
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Fig. 8: Prediction results of the second cell (44, 56), Navigli
district.

Fig.6 has shown the benefits of introducing cross-domain
datasets into cellular traffic prediction, but the contribution
of each kind of data is not clear. Thus the impacts of
social, BSs, and POIs datasets on prediction performance are
further explored and summarized in Table II. In this table,
“No cross-domain” represents the case that we do not use
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Fig. 9: RMSE comparisons of prediction versus ground truth for all methods on Internet dataset of cell (44, 56).

the cross-domain datasets when training the model, while
“+ A” denotes that dataset A is incorporated into training.
For instance, “+ Social” indicates that social activity data is
considered when training prediction model. From Table II, it is
noticeable that the performance can be considerably improved
by introducing cross-domain datasets. Different kinds of cross-
domain datasets have different influences on the performance.
For SMS dataset, social data brings about 3.7% improvements
in terms of RMSE, while BSs 5.5% and POIs 8.4%. At the
same time, social data brings about 16.2% improvements with
respect to MAE, while BSs 11.9% and POIs 13.6%. So each
type of cross-domain datasets has different impacts on the
prediction performance. But from the perspective of overall
results, BSs and POIs data can bring more performance gains
than social data.

D. Comparisons of STCNet and baselines

To demonstrate the prediction performance of our proposed
STCNet, the comparison between predicted values and ground
truth along with the corresponding error analysis are displayed
in Fig.7 and Fig.8. Specifically, Fig.7 shows the results of cell
(50, 60), which belongs to the area of Milan’s Duomo, a very
famous tourist attraction that is located in the city center of
Milan. Fig.8 shows the results of another totally different cell
(44, 56), which is located in the Navigli District, one of the
most famous nightlife places in Milan.

The three sub-figures on the left side of Fig.7 show the
comparisons between predicted values and real values on
datasets of SMS, Call and Internet traffic, respectively. The
x-axises denote the time interval index of the test dataset and
the y-axises are the traffic volume. We can see from these
sub-figures that our proposed STCNet model can accurately
predict the traffic values for all the three kinds of cellular

traffic. Though the scales of these traffic differ a lot, the peak
traffic volume can still be accurately predicted by STCNet.

The three sub-figures of bar plot on the middle side of Fig.7
are the corresponding prediction errors in terms of MAE for
traffic volume of each time interval. It can be observed from
the bar plot that the prediction errors are relatively small.
Several large errors appear around the time index of 145, at
which the traffic has a sudden increase for all the three kinds
of services. This time index actually corresponds to the New
Year’s Eve and the abnormal traffic volume is very hard to
predict, therefore large error occurs. The overall prediction
error can be more quantitatively measured by the cumulative
distribution function (CDF) as a function of prediction error
and the results are plotted in the sub-figures on the right
side of Fig.7. Results reflect that about 75% prediction errors
are less than 100 for the SMS traffic. For Call and Internet
traffic, the values are 68 and 453, respectively. Based on the
comprehensive analysis of Fig.7, we can conclude that the
proposed STCNet can make a high prediction accuracy for
all the three kinds of traffic. Similar conclusions can be made
from Fig.8 and for simplicity’s sake, we omit them here. From
the above analysis, it can be concluded that our proposed
STCNet remains robust for different cells.

Fig.9 shows the comparisons of the predicted values versus
the ground truth for all involved methods and their correspond-
ing CDF of the prediction errors based on Internet dataset
of cell (44, 56). Results show that for methods of LR and
SVR, there exist relatively big gaps between the predictions
and the ground truth. So the performances of shallow learn-
ing algorithms are not so good since such algorithms have
limited parameter space in modeling complex cellular traffic
dynamics. This is because the increased parameter capacity
can help well capture the spatial and temporal dependencies
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of the cellular traffic generated by geographically distributed
BSs. STCNet achieves the best overall performance especially
for peak traffic prediction, which can be intuitively seen from
Fig.9. The reasons can be attributed to the strong abilities
of STCNet in modeling both spatiotemporal dependencies
and spatial constraints of cross-domain datasets on cellular
traffic generation. To intuitionisticly show the performance
difference, we give the CDF of the prediction errors in the last
sub-figure of Fig.9. It is shown that 75% prediction errors of
LR, SVR, LSTM, DenseNet and STCNet are approximately
lower than 484, 458, 267, 227 and 179, respectively. For
the traffic data of this cell, STCNet achieves about 21%
improvements compared with DenseNet, which is the state-of-
the-art prediction method for cellular traffic. Compared with
methods that only consider cellular traffic itself, STCNet in-
deed introduces more parameters since the inputs of meta data
embedding and cross-domain modeling, but the performance
gains are quit significant.

TABLE III: Transfer learning performance on three kinds of
datasets.

Dataset Transfer or Not RMSE MAE R2

SMS
No Transferring 55.0727 28.3204 0.8593

Transferring with Call 50.9684 25.9039 0.8714
Transferring with Internet 52.7757 25.4138 0.8593

Call
No Transferring 35.4332 16.8691 0.9163

Transferring with SMS 33.4663 15.7211 0.9240
Transferring with Internet 30.8529 14.4174 0.9312

Internet
No Transferring 186.1173 111.7783 0.9411

Transferring with SMS 168.8695 97.8216 0.9511
Transferring with Call 169.5268 94.3403 0.9503

E. Performance of transfer learning between various kinds of
cellular traffic

As described in Fig.3, the correlation coefficients among
different kinds of cellular traffic are very high. This indicates
the possibility of transferring knowledge from one kind of
cellular traffic to another one. So, in this subsection, we report
the performance of transfer learning among different kinds
of cellular traffic and the obtained results in terms of three
evaluation metrics are summarized in Table III.

The “No Transferring” in Table III means the results are
achieved using only the single dataset. “Transferring with ?”
denotes that our results are obtained with the aid of knowledge
transferred from the traffic of ?. To take the experiments on
SMS traffic dataset as an example, when ? represents the Call
traffic, the results are obtained with knowledge transferred
from Call dataset. That is, the STCNet model is trained for
SMS traffic dataset but with parameters initialized by those
learned from Call dataset.

We can see from Table III that transfer learning can indeed
bring performance gains for all the three kinds of cellular
traffic. Taking the performance in terms of RMSE as an
example, the transfer learning brings about 7.45% and 4.17%
improvements when transferring with Call and Internet cellular
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Fig. 10: Impacts of model complexity on performances and
the convergence speed illustration.

traffic, respectively. The improvements for Call cellular traffic
are 5.55% and 12.9% when transferring with SMS and Internet
cellular traffic. Similarly, the improvements for Internet traffic
are 9.27% and 8.91% when transferring with SMS and Call
cellular traffic. For the other two performance metrics, MAE
and R2, the gains can also clearly observed from Table III.
The results of Table III validate the effectiveness of transfer
learning when performing cellular traffic prediction.

F. Complexity and convergence analysis

The computational complexity of STCNet is O(
∑L
l=1(H ·

W ·K2
l ·Fl−1 ·Fl)), where H and W are the height and width

of the input, Kl and Fl denote the kernel size and filter size
of the l-th layer. Since the depth of STCNet, L, dominates
the complexity and affects the final performance greatly, we
investigate the relationship of the parameter complexity and
the prediction performance. The results are represented in
Fig.10, in which the convergence speed of STCNet is also
displayed.

Results demonstrate that with the increase of model com-
plexity (L), the RMSE and MAE get better first, and then
degrade substantially, while the R2 score performs relatively
stable. This is because the representation ability of the model
is enhanced as the complexity increases, but after a certain
degree, the model is too complex and overfits the data, thus
causes performances degradation. For convergence speed, as
shown in the last sub-figure of Fig.10, after 250 epochs,
the RMSE performance is largely improved and approaches
stable, reflecting the effectiveness of our adaptive learning rate
strategy. The RMSE performance tends to be stable after 300
epochs, indicating that STCNet can converge and the training
process is time efficient.

V. CONCLUSION

This work investigated the intelligent traffic prediction based
on deep learning techniques for future cellular networks.
To fully characterize various factors (spatial, temporal and
external) that affect cellular traffic generation, three kinds of
cross-domain datasets, i.e., BSs information, POIs distribution
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and social activity level, were crawled and their correlations 
with the cellular traffic were comprehensively analyzed. Based 
on these datasets, a novel deep neural network architecture, 
STCNet, was proposed to predict the cellular traffic. The 
ConvLSTM unit is incorporated into STCNet to simultane-
ously capture the spatial and temporal dependencies of cellular 
traffic. V arious c ross-domain d atasets w ere p rocessed a s a 
multi-channel tensor and treated as spatial constraints among 
different cells to capture the external influencing factors. 
Besides, the STCNet adopted the dense connectivity pattern 
to ensure maximum information flow b etween convolution 
layers, that is, each layer of STCNet is connected to every other 
in a feed-forward fashion. In addition, aiming to model the 
pattern diversity and similarity of different city areas, a clus-
tering method was proposed to segment the city into different 
functional zones and a successive inter-cluster transfer learning 
strategy was put forward to achieve this purpose. Transfer 
learning between different kinds of cellular traffic w as also 
explored. Experiments have been conducted using real world 
cellular traffic d atasets a nd t he r esults h ave d emonstrated the 
effectiveness of our proposed STCNet model. The prediction 
performances on various evaluation metrics have shown the 
necessary of introducing of cross-domain datasets to enhance 
traffic prediction. Experimental results have also revealed that 
deep transfer learning can well capture the similarities between 
different kinds of cellular traffic t hus h as g reat p otentials for 
intelligent traffic prediction.

One possible extension of this work would be exploring 
other types of cross-domain datasets for cellular traffic predic-
tion and transferring knowledge between different cities. Be-
sides, designing more effective loss functions to deal with the 
inherent drawbacks of lp loss would be an interesting direction 
of future research. Furthermore, introducing noise and sparsity 
to the dataset and designing robust prediction algorithms based 
on transfer learning are also worth exploring. The source code 
of this work is available at https://github.com/zctzzy/STCNet.
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